
Multimedia Tools and Applications (2019) 78:23469–23488
https://doi.org/10.1007/s11042-019-7660-y

Occlusion-robust bimanual gesture recognition
by fusing multi-views

Geoffrey Poon1 ·Kin Chung Kwan1 ·Wai-Man Pang1

Published online: 4 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Human hands are dexterous and always be an intuitive way to instruct or communicate with
peers. In recent years, hand gesture is widely used as a novel way for human computer
interaction as well. However, existing approaches target solely to recognize single-handed
gesture, but not gestures with two hands in close proximity (bimanual gesture). Thus, this
paper tries to tackle the problems in bimanual gestures recognition which are not well stud-
ied from the literature. To overcome the critical issue of hand-hand self-occlusion problem
in bimanual gestures, multiple cameras from different view points are used. A tailored multi-
camera system is constructed to acquire multi-views bimanual gesture data. By employing
both shape and color features, classifiers are trained with our bimanual gestures dataset.
A weighted sum fusion scheme is employed to ensemble results predicted from different
classifiers. While, the weightings in the fusion are optimized according to how well the
recognition performed on a particular view. Our experiments show that multiple-view results
outperform single-view results. The proposed method is especially suitable to interactive
multimedia applications, such as our two demo programs: a video game and a sign language
learner.

Keywords Gesture recognition · Bimanual gesture · Multiview ·
Learning based recognition · Occlusion · Ensemble of classifiers

1 Introduction

Hand gesture is a conventional media for communication in human history apart from
speech and voice, and is also considered as one of the most convenient and intuitive forms
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of control and command in many multimedia applications. A proper introduction of hand
gesture inputs to a multimedia application can certainly improves excitement and user
engagement, such as gestures for invoking certain special actions in games or hand sign
language for learning purpose. Among the existing hand gesture recognition approaches,
vision-based methods are the most popular and suitable for wider range of applications as
they require no tailored equipment or wearing of gloves.

The community continuously put most of the efforts in recognizing single-handed ges-
ture such as Fig. 1a, and achieved rather satisfactory results. The recent works from Wu and
Kang [40] as well as Ren et al. [29] are good examples which achieved robust recognition
even in complex environment. However, there are fewer works target for gestures formed
by two hands (bimanual gesture) such as Fig. 1b. Conventional commercial solutions also
do not provide satisfactory recognition results. Figure 2 demonstrates a case of failure using
the leap motion hand tracking solution. A bimanual “gun” gesture is performed, while a
degenerated result is recognized. Potential application of bimanual gesture can be unlim-
ited, while it is with high demand in games and educational multimedia applications for
sign language learning.

This paper attempts to tackle the vision-based recognition of static bimanual gestures
appearing in multimedia applications and games. Although methods for single-hand recog-
nition are applicable to bimanual gesture, a serious problem that need to be solved is the
hand-hand self-occlusion. It is similar to the challenges in two persons’ interaction recog-
nition work by Li and Leung [19] in which serious occlusion causing ambiguity. Inspired
by [19], we follow the multiview approach in order to minimize the ambiguity introduced
by self-occlusion, a multi-camera setup is constructed to cover a wider range of viewing
angles. However, unlike [19], our multiview setup tries not to rely on RGB-D cameras; as
classical RGB cameras is less bulky and widely available, so it is more ideal for a practical
multiview system. By arranging the monocular RGB cameras in diversified viewing points,
more features can be provided to compensate other views in the recognition.

Our method tries to extract the color and shape features in the hand gesture frames
acquired from the multiple synchronized views. However, conflict may occur between the
recognized gestures from different views. As a result, a fusion scheme of results from dif-
ferent views is designed. The scheme considered all the performance of a particular view to
a certain target gesture, because some hand gestures may look similar from a certain view
causing ambiguity in recognition. Then, our fusion scheme tries to introduce weightings
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Fig. 1 Examples of single-handed and bimanual gesture
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Fig. 2 Conventional commercial solution does not handle bimanual gesture well especially when significant
occlusion occurs

so as to balance the contributions of different cameras for different gestures based on
their performances. These weightings are obtained via a gradient decent based optimization
process.

A total of 6 different bimanual gestures are used in our preliminary study. The experi-
mental results reveal that, with the use of multiple views and an optimized weighting-based
fusion scheme, the recognition accuracy is improved comparing to their single view coun-
terparts. The proposed bimanual recognition is also deployed on a simple game and a sign
language learning system to illustrate its interactive-rate capability.

In summary, this work tried to solve bimanual gesture recognition with a multi-view
approach. With the construction of new multi-camera system and new dataset acquired,
multiple classifers are ensembled to obtain better results. Furthermore, we proposed using
optimization in seeking the best fusion scheme in our multiple view approach. All above
mentioned will contribute to further research in bimanual gesture recogition.

The rest of this paper is organized as follows. Significant works from the literature
of hand gesture recognition are reviewed in Section 2. In Section 3, we show our multi-
view capturing setup for acquiring bimanual gesture data. Then, we introduce the proposed
bimanual gesture recognition approach and details of our fusion process in Section 4.
Experiments and comparison to existing methods are presented in Section 5. Finally, we
demonstrate two multimedia applications in Section 5.5 and conclude in Section 6.

2 Related works

Based on the technique, hand gesture recognition methods can be mainly classified into
glove-based, colored marker, and vision-based approaches.

Glove-based methods employ special designed glove with electromechanical parts to
know the relative position of various hand sections of user [14, 24]. Its accuracy in
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measuring hand gesture is supposed to be the highest among the three approaches. However,
the needs of special instrument hinder glove-based methods to be popular.

Colored marker approaches [39] thus require users to paint their hands or wearing gloves
with colors in different sections. The orientation and pose of hands can be estimated quickly
by the colors. However, the criteria of color painted hands look weird and definitely less
attractive then vision-based recognition of bare hands.

Comparing to these two approaches, vision-based methods do not require any spe-
cial device other than cameras. Erol et al. [9], Sarkar et al. [31] as well as Rautaray
and Agrawal [28] had presented detailed reviews about vision-based hand tracking. Later,
vision-based recognition are further enhanced by hand extraction using depth sensing tech-
niques with Kinect [2] or Leap Motion [25]. Poularakis and Katsavounidis [26], as well as
Leite et al. [18] applied hand recognition with depth in VR or other environments. Wang
et al. [38] locate and segment single hand from depth images acquired from Kinect. Their
method then performs superpixels to represent the hand surfaces. EMD is applied to mea-
sure the distance between the distributions of the centers of superpixels. Tzionas et al. [36]
further enhanced 3D hand tracking with discriminative salient points. More examples of
depth-based hand recognition can be found in [6]. There are also attempts to augment opti-
cal based recognition with other modalities like in Chen et al. [4], they proposed to use
inertial sensors attached on users to obtain motion for gesture analysis. They found a higher
recognition rate with use of an HMM-based recognizer than the baseline approach using a
statistical feature-based classifier.

Apart from using depth data, a number of recent works attempt to rely merely RGB
images which have a wider availability. Chen et al. [5] choose to segment the hand into
parts like palm and fingers. Then, according to the detected hand and its distance trans-
form to a template, a rule classifier is applied to recognize the hand gestures. Bulugu and
Ye [3] extracts the extended higher order local autocorrelation (HLAC) features from a
log-polar transformed hand image. Linear Discriminant Analysis (LDA) is then applied to
learn the extracted features and classify the gestures. Joshi et al. [13] first obtains the body
skeleton in order to locate hand regions in the images. Then, a set of consecutive frames
are converted to features using HOG and PCA, and feeds into a random forest classifier
for the recognition of hand gestures. Zen et al. [41] proposed the Transductive Parame-
ter Transfer which predicts a new personalized classifier for every user. In other words,
they can automatically label the face or gesture images of a new user subject based on
the learning results of other subjects. While their method focuses on recognizing the tra-
jectory of hands instead of their pose, so it cannot be directly applied into our problem.
Wu and Kang [40] segment the hands using dense optical flow. The fingers of the hand
are segmented by calculating the average centroid distance of the contour. However, their
method focuses on the fingertips for gesture recognition which is not reliable for biman-
ual gesture as fingers are often being occluded. Despite all these methods work well for
classic RGB images, they are designed and tested for recognizing single hand gestures
only.

Another branch of attempts tried to solve the recognition with deep convolutional neural
network which had been used to tackle many challenging vision-based recognition tasks.
Tang et al. [34] employs straight forwardly the existing LeNet [17] model for hand gesture
datasets. Barros et al. [1] and Molchanov et al. [20] incorperate 3D convolution to handle
sequence of RGB-D hand gesture images. Molchanov et al. [21] extends their previous work
with a recurrent 3D convolution network so that simultaneous detection and classification
of hand can be achieved. It is worth to note that all the above methods use only single RGB
or depth sensor which do not nicely handle the problem of occlusion.
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However, most of existing work only focus on single-hand recognition. Recently, a few
attempts are targeting for bimanual gesture recognition. Kristensson et al. [16] relies on
the more robust fully-body skeleton recognition in identifying hand positions, and then
enhances the two-hand motional gesture with probabilistic algorithm. However, the work
does not put much efforts in recognizing the pose of hand. Oikonomidis et al. [23] proposes
recognizing two hands using RGB-D camera with a model-based method that matches all
the reprojected hand gestures with the use of Particle Swan Optimization (PSO). However,
the tracking fails when there is self-occlusion of two hands. Schramm et al. [32] proposed
a method to match music conducting gestures with the purpose of learning and evaluations.
Their work acquired RGB-D frames with two arms’ motions and use a modified DWT sta-
tistical classifier to estimate the temporal accuracy of the beat done by the music conductor.
Saeed et al. [30] improves bimanual tracking with temporal coherence and assume that the
pose of the hand does not change when being occluded, which is not always reasonable.

The works by Deng et al. [7] and Ge et al. [11] both employed 3D convolution in their
neural network, but they first convert the depth map to a 3D volumetric representation before
feeding it into the network to achieve better recognition results. Wan et al. [37] used two
generative neural networks in order to learn the coupling and mapping between hand pose
and corresponding depth image, thus they call it CrossNet which involves training a number
of networks in complex steps. Recently, Mueller et al. [22] presented a method using two
subsequently applied CNNs to overcome clutter and occlusions. Their method focused on
clutter appeared in hand-object interaction instead of hand-hand interaction as ours. Thus,
they assumed single hand will appear with depth (RGB-D) which is different from our goal
in recognizing two hands from RGB data. All these methods relied on depth information
from the image to obtain accurate results.

In contrast, our method tries to solve the occlusion problem with only RGB images but
in a multi-view approach. By observing from a wider range of viewing angles to the two
hands, we increase the chance to avoid confusion made by occlusion, and therefore improve
our confidence in identifying a certain hand posture.

3 Multi-view setup

Before going into the detail of our method, we first introduce our multi-view setup for
acquiring hand gesture data. One major difficulty in recognizing bimanual gestures is its
highly self-occluded properties. Figure 3 shows two examples of bimanual gestures. These
two gestures look rather different from the front view, while we cannot easily differenti-
ate them from the side view. It is because the unique features of these gestures are being

BerutseGAerutseG
Front Side Front Side

Fig. 3 Gestures may look different in certain view, but similar in another view due to self-occlusion
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occluded. This example illustrates that bimanual gestures are prone to ambiguity if we rec-
ognize the gestures with only one view. To overcome this problem, a direct solution is to
employ multi-view approach in order to minimize the effect of self-occlusion.

Figure 4 shows our multi-view setup. Three cameras are installed in diversified viewing
points. We named the views of these three cameras as left, front, and right view respectively.
It is worth to note that our setup does not require precise positioning and orientation setting
during installation, a rough one is enough. To calibrate the camera, we place a marker on the
capturing area, and roughly adjust the cameras until the marker appears in the same position
on the screen for all experiments. Thanks to the robustness of our learning-based method,
our recognition is highly flexible and repeatable for different environments.

4 Bimanual gesture recognition

By using our tri-camera setup, we captured a set of bimanual gesture images(examples in
Fig. 5) from three different views. Our training samples are prepared by labeling a square
hand region inside each camera frame, followed by rescaling and feature extraction. Finally,
we employ Support Vector Machine (SVM), which is widely used for recognition, to learn
a robust classification of the hand features.

4.1 Image features extraction

To improve robustness in learning, it is common to extract features from the images. Sim-
ilar to most of the existing hand recognition methods, our method (Fig. 6) begins with a
segmentation of hand based on the skin color. It allows the classifier to ignore most of the
background, and focus on the targeted hands in the image. We do this by employing the
skin color model of [27], which is a set of color criteria for skin in RGB, HSV, and YCrCb
spaces. The use of multiple color spaces suppresses the effect of different lighting con-
ditions, mainly addresses the lighting direction and intensity variations. Those criteria are
developed based on learning from large number of cases. While by observing the criteria of

Fig. 4 Our multi-view setup environment with three cameras for capturing data
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Gesture 1 Gesture 2 Gesture 3

Gesture 4 Gesture 5 Gesture 6

Fig. 5 The six bimanual gestures used in our experiments

their model [27], the chromaticity (e.g., CrCb and Hue) are major components taken into
account in order to overcome the variance in illumination conditions.

With the segmented hand images, we normalize their size to 200 × 200 to obtain scale-
invariant features. However, as the homogeneous and smooth skin surfaces, the variation
of appearance of hands are relatively limited. Thus, we model the image features by con-
sidering its color and shape. Our color feature is constructed by computing the histogram
of oriented gradients (HOG) in the color space. For shape feature, edge orientation his-
tograms (EOH) after Canny edge detection is employed. To suppress the effect of lighting
direction, we use unsigned orientation for both HOG and EOH in our model. Both HOG
and EOH form feature vectors with 3600 dimensions.

Beside the color and shape feature, we had considered texture feature as well. We tried
using Gabor filter [10], which is a prevalent approach for extracting useful texture features

Fig. 6 The construction of features and learning process for a single view
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in a scale and orientation invariant manner. As expected, the outcome is poor due to the fact
that texture on smooth skin surface are relatively limited. The overall accuracy of it is less
than 2% when applying to a SVM classification. Thus, we strongly believe texture feature
is not helpful to the problem and is ignored in our bimanual recognition solution.

4.2 Ensemble of SVM classifiers

With the features extracted, we train the gesture classifier with SVM. However, naı̈vely
putting all the features into single SVM is inappropriate in our multi-view situation, as the
appearances of hands from different views vary significantly. Naı̈vely learning all features
together greatly confuses the SVM classifier and leads to poor results.

Hence, we decide to tackle the different features from different views separately by uti-
lizing independent SVM classifiers. Furthermore, two SVMs are used to handle color and
shape features individually in order to minimize error introduced by the scale normalization
of features.

In other words, each SVM is only trained with a single feature (Fig. 6) of one view. As
a result, we used six different SVMs in total to learn the two features for the three views.
In all SVMs, we use the Gaussian radial basis function as kernel with gamma γ = 4.8 to
support non-linear learning.

These six trained SVMs can provide individual prediction based on corresponding input.
To obtain a single answer out of these individual estimation, fusion method from classifier
ensembling is employed. According to Dietterich [8] as well as Hansen and Salamon [12],
a necessary and sufficient condition for an ensemble of classifiers to be more accurate than
any of its individual members is if the classifiers are accurate and diverse. In our case, as
each classifier is either with a different input or a different feature extracted, it obviously
leads to diversified individual.

To combine individual prediction which may be inconsistent to each other, a simple
solution can be done by choosing one of the results with lowest classification score. How-
ever, some bimanual gestures may look similar in certain views and causes ambiguity (e.g.
Fig. 3) when the unique features are occluded. Thus, we can expect a poor prediction will
be resulted in such cases. Purely relying on one of the six results is therefore not a good idea
in our method. We need to decide the most reliable result by considering all SVMs together.

Our idea is to fuse the results by a weighted sum on all SVM confidence scores from
different views for different gestures. We have independent weightings for different gestures
of different views. In other words, our 6-gesture and 3-view data will have 18 weightings
in total. This idea is analogous to the work of Singha and Laskar [33], which developed a
classifier fusion method for recognizing the trajectory of single hand movement. Figure 7
shows the flow of prediction of our method and the ⊕ symbols notate the weighted sum.
The final score Sg(I ) of having gesture g in image I is defined as

Sg(I ) = ωg,L × Sg,L(I ) + ωg,F × Sg,F (I ) + ωg,R × Sg,R(I ) (1)

where L, F , and R represent the left, front, and right view respectively. ω is the salience of
the view for different gesture. It is used to reduce the contribution of the view that may cause
ambiguity in bimanual gesture. Sg,V (I ) is the confidence score from the SVM classifiers of
view V , which is defined as weighted sum of SVM scores for color and shape features as
follow:

Sg,V (I ) = α × Sg,V,color (I ) + (1 − α) × Sg,V,shape(I ) (2)
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Fig. 7 Our prediction process. A final prediction is decided by combining six SVMs of different views and
features

where α is the weighting in favor to color feature. In our experiments, we believe that
both color and shape features are equally important. Thus, we set α = 0.5 in all of our
experiments. The final prediction result is the gesture g′ with lowest final score S′

g(I ).

4.3 Optimization of weightings

To obtain the weighting ω for all gestures and views, we have the following assumption. If
a gesture can be easily recognized by the images captured from a view (high accuracy), this
gesture should have unique features in this view, so classification result from this view is
more likely to be correct. In contrast, if a gesture is often classified wrongly in a view (low
accuracy), certain ambiguity should have occurred, possibly because of occlusion. It would
be better if we limit its contribution to the final result. Base on this assumption, to obtain
the weightings, we first conduct a leave-one-out cross-validation (more detail in Section 5),
and compute the accuracy of different gestures from different individual views (Table 2).
The ratio of these accuracy values are used to calculate an initial ω of one view. Without the
loss of generality, the initial weight of left view ωg,L is defined as:

ωg,L = Ag,L

Ag,L + Ag,F + Ag,R

(3)

where A is the accuracy of recognition using single view. This equation also applies to right
and front views.

Note that the initial weights here are not necessary to be optimal. Thus, we further adjust
the weightings by optimization with simple gradient descent method and obtained the values
of ω (Table 1). The objective function is simply the accuracy of using such weighting. For
the negative data, we set the weightings of all the views equal.
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Table 1 The weighting ω of
views for different gestures Initial Final

Left Front Right Left Front Right

Gesture 1 0.28 0.46 0.26 0.00 0.92 0.08

Gesture 2 0.22 0.46 0.32 0.13 0.30 0.56

Gesture 3 0.35 0.32 0.33 0.04 0.28 0.67

Gesture 4 0.19 0.47 0.34 0.31 0.26 0.41

Gesture 5 0.32 0.38 0.30 0.30 0.61 0.07

Gesture 6 0.31 0.39 0.30 0.00 0.99 0.01

Negative 0.33 0.33 0.33 0.33 0.33 0.33

Our optimization starts with an initial weighting of the views (i.e., 3 different views in our
case). Then, we adjust the weighting until the overall accuracy (4) improved and converged.

overall accuracy = max

(
1

N

N∑
n=0

∣∣In ∩ {
x ∈ I | arg max(Sg(x)) = n

}∣∣
|In|

)
(4)

where N is the number of different gestures, in our case N is 6. In is the image of gesture
n. Sg(x) was defined in (1).

To avoid local minimum, we also randomly generate multiple initialization values as
population and perform gradient descent multiple times. The instance with highest score is
used as our final result. In other words, the final weighting should have the best accuracy
among the case in our training data. Similar to all learning based methods, we believe that
when the variety of training data is sufficiently large, these weights should be suitable for
most cases.

5 Experimental results

We carried out a series of experiments to evaluate the performance of our bimanual gesture
recognition method. Six subjects are invited to capture the gesture images by our tri-camera
setup. To increase the variety of the data, these subjects are different in age and with differ-
ent clothing (e.g., Long or short sleeve). We captured 10 s of gesture motion in 12 fps from
each subjects for each gesture in one view. This results in a total of 2160 images for one
gesture. For the sake of reproducibility, the whole dataset will be made available to pub-
lic together with this paper. The Github link: https://github.com/geoffrey0822/handgesture
svm.

5.1 Accuracy analysis

Our first experiment is a leave-one-out cross-validation. This experiment is to validate the
recognition performance based on separated training and testing samples. Each time we use
the data set of one subject as a query, and the remaining data of other subjects as the training
data set. The experiment is repeated for each subject. Table 2 shows the mean accuracy of
recognition in this experiment.

As expected, the front view classifier performed well for hand recognition comparing to
other views’. It is because conventional hand gestures are often designed to show in front

https://github.com/geoffrey0822/handgesture_svm
https://github.com/geoffrey0822/handgesture_svm
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Table 2 The accuracy of
recognition using different views Left Front Right Our method

Gesture 1 62.6% 100.0% 68.5% 100.0%

Gesture 2 55.6% 96.9% 59.3% 83.3%

Gesture 3 92.2% 100.0% 100.0% 100.0%

Gesture 4 58.1% 83.3% 70.5% 97.0%

Gesture 5 93.2% 98.1% 89.3% 100.0%

Gesture 6 91.3% 93.6% 82.1% 100.0%

Negative 96.9% 100.0% 95.3% 98.4%

Overall 78.5% 96.0% 82.1% 97.0%

of the other people for communication. While, we can still find the improved accuracy
when combining three views with our method. From the table, it is obvious that most of our
combined view results outperform other single view results. This validates the effectiveness
of our multi-view approach.

Figure 8 shows the confusion matrix of our recognition using combined view. It indicates
how many samples of a data class (Y-axis) is classified into an output class (X-axis). The
population of each block is color-coded from blue (Less samples) to yellow (More samples).
From the confusion matrix, there is an obvious diagonal highlighted in yellow, which means
that most of the samples can be classified into the correct classes. It evidences that our
method works well for bimanual gesture recognition.

Fig. 8 The confusion matrix of our method. Yellow represents more samples while blue represents less
samples



23480 Multimedia Tools and Applications (2019) 78:23469–23488

5.2 Comparisons with existingmethods

There is a number of existing methods which tackle the problem of hand recognitions in
real time. We selected a few representatives based on their currency, used method and
approaches, including Chen et al. [5] (Segment-based), Bulugu and Ye [3] (HLAC+LDA),
Joshi et al. [13] (HOGPCA+RF), Barros et al. [1] (Multichannel) and Tang et
al. [34] (LeNet). These methods are chosen because most of them involve only RGB data
in their core algorithm and feature extraction procedures which are consistent to our input
data. However, unlike our method, all of these method are designed for single view input
only. In order to have a fair comparison, we only apply the front view to these methods.

Figure 9 shows the experimental results of these methods together with our proposed
one. Individual accuracy and overall accuracy are presented in the chart. Most of the exist-
ing methods do not perform well, having recognition accuracy below 50%, for our bimanual
gesture data. We believe this is mainly due to the inability of feature extraction approach
used in capturing the unique characteristics of bimanual gestures. Each method also has its
own limitations. For example, segment-based method assumes a front facing palm which
is rare in bimanual gesture. The log-polar transformation in HLAC+LDA method causes a
bias to the appearance near the center point of the palm, which is not reliable for bimanual
gestures. The HOGPCA+RF method requires an accurate hand region extraction from body
skeleton, as well as an over reduced dimensionality with PCA in the feature; all of these
introduce difficulties in properly recognizing complicated bimanual gestures. Only LeNet
is comparable to our method, and has a high accuracy over 70% for all cases. Despite the
LeNet method achieved a rather satisfactory result, our proposed framework still outper-
forms it in most of the gestures as well as the overall accuracy. As convolutional neural
network optimizes proper feature itself in the training process, its major difference to our
method becomes the multi-view inputs. It is very likely that our multi-view approach pro-
vides better tolerant to the occlusion appeared in gestures and improves the recognition to a
certain extent.
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Fig. 9 The recognition accuracy of our method and existing ones including Segment-based, LDA, HOG-
PCA+RF, Multichannel and LeNet
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5.3 Different fusion schemes

Our employment of various views facilitate occlusion handling of bimanual gestures, but
it also requires to combine results from multiple classifiers. This experiment tries to inves-
tigate the best fusion scheme so as to obtain a unified classification result with highest
accuracy. Based on the works of Kittler et al. [15] and Tax et al. [35], we tested the
common schemes of score-based classifier fusion including simple summation, product,
minimum/maximum, weighted sum, weighted min/max and voting. For the weighted sum
and weighted min methods, we compute all the weights by optimization as in Section 4.3.

Table 3 summarized the rate of recall and precisions for all different gestures of our
data and the overall result. Most of them obtain better results than any of the single view
(see front, left and right results at bottom of the table). Among all of the fusion methods,
weighted sum achieves the best in both overall rates in recall and precision which are 0.970
and 0.902 respectively.

Figure 10 extracts a few samples from different gestures to allow a better understanding
of the fusion and its effectiveness. On top right corner of each frame lists the classification
scores of the frame to a certain gesture (e.g. gesture 1 is indicated with G1, gesture 2 with
G2, and so on). This score represents the distance to the class boundary in SVM, therefore,
a lower score means a higher chance to belong to that class. In most of the cases, the pre-
dictions from different views are correct and consistent to each other, such as gesture 2 and
3. These simple cases will always receive a fused prediction the same as all views. While
there are cases that inconsistency occurs in the prediction among views.

From the case of gesture 1 (first row in Fig. 10), we can find that the lowest classification
score in left and right views goes to gesture 5, while front view predicts gesture 1. This
conflict is solved by our optimized fusion scheme mentioned, and a final score is computed
as shown on the right. In this case, gesture 1 received the lowest final score 0.26 which
is consistent to the ground truth. Case of gesture 4 also has similar situation, where both
left and front views predict wrongly, but right view obtains a correct prediction. The fusion
process then based on the optimized weighting to finalize the prediction as gesture 4 which
is the right answer.

5.4 Analysis of features and classifiers

We choose to use color and shape as the features for gesture recognition. Their abilities can
be observed from the recognition accuracy in Fig. 11. At the same time, we are curious on
the performance of different classification methods. Thus, experiments are carried out with
different combinations of features and classifiers which included popular ones LDA [3],
Random Forest [13] and SVM (ours) classifiers. This experiment uses multi-view data
and repeats the fusion procedures as in Section 4.3 but with a different classifier and fea-
tures. The results are plotted in Fig. 11, and one can easily find that our proposed solution
achieves the best result. The shape feature (EOH) does not fit well to the LDA classifier,
and thus leads to poor results for both EOH and HOG+EOH features in LDA. However,
using both color and shape features (HOG+EOH) for SVM can yield the highest recognition
rate. Although purely using color features (HOG) alone with SVM can also yield a high
enough recognition rate, it does not perform well for some individual bimanual gestures.
This is also the reason of choosing color and shape with the SVM classifier in our proposed
method.



Multimedia Tools and Applications (2019) 78:23469–23488 23483

5.5 Application and comparison with existing solutions

We propose two potential applications in great demand of bimanual inputs. The first appli-
cation serves for gaming purpose for controls. We assign two of our gestures, gesture 1 and
3 in Fig. 5, with different meanings for gaming such as “defense” and “attack” respectively.
This allows us to create an interactive combat game using these gestures. The second appli-
cation is a sign language learner. The gestures 5 and 6 in Fig. 5 are sign language. They
represent “friends” and “coffee” respectively.

Left view Front view Right view Final scores
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1
G
es
tu
re

2
G
es
tu
re

3
G
es
tu
re

4
G
es
tu
re

5
G
es
tu
re

6

Fig. 10 Extracted sample frames from various bimanual gestures. Classification scores of each frame are
shown on the top right corners. The final scores are obtained by fusing of scores from different views



23484 Multimedia Tools and Applications (2019) 78:23469–23488

0

10

20

30

40

50

60

70

80

90

100

LDA RandForest SVM (Ours)

Ac
cu

ra
cy

(%
)

HOG

EOH

HOG+EOH

Fig. 11 The comparison of performance for various features and classifiers

If we implement the recognition of these bimanual gesture with existing commercial
sensors like Kinect [2, 29] and Leap Motion [25] which are widely used for gesture recog-
nition. It will easily suffer from poor results. These two sensors required to reconstruct the
skeleton model of our body or hand, which often makes an assumption that every part of
our body or hand is visible to the sensor. Thus, when the hands are highly overlapped, their
skeleton reconstruction is error-prone and fail to recognize the hand gesture properly.

We do the comparison by performing the same gestures as in Fig. 5 and try to recognize
with single Kinect and single Leap Motion. According to our experiment, Kinect can only
achieve 60% accuracy for bimanual gesture. Leap Motion even failed to detect the existence
of hands due to the self-occlusion.

In contrast, our gesture recognition enables the development of both interactive game
and learning system for people to self-learning sign languages (Fig. 12). Readers are rec-
ommended to refer to our accompanied video for the interactive-rate performance of these
two applications.

renraelegaugnalngiS)b(gnimaG)a(

Fig. 12 The potential applications of our methods
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6 Conclusions and future works

We presented a learning-based method to perform bimanual gesture recognition using SVM.
To tackle the self-occlusion problem, we use multiple cameras from different viewing angles
to capture the hand data. Hence, ambiguity occurs in one view can be compensated by
another view. To align the results from different views, a weighted sum fusion scheme is
proposed. Optimal weightings are obtained in order to adjust the contribution of a particular
view based on its ambiguity on a certain gesture.

While our current method has several limitations. First, we assume the input data are
static images. Thus, our method cannot handle gestures with motion well in the current
implementation. In the future, we will extend our method to motion gestures by using multi-
ple consecutive frames as learning data. Second, our segmentation purely based-on the skin
color. Similar to others, using skin color may not be reliable. Lastly, we assume that the
hand regions in the data are manually labeled on the image. However, we believe that this
problem can be easily solved by any hand tracking or hand detection methods. But more
investigations are needed.

Our current method focuses on a multiple view analysis of the bimanual gesture recog-
nition. To the best of our knowledge, there does not exist similar datasets for training and
testing. In the future, we are preparing to put more effort in collecting a larger number of
bimanual hand samples. Last but not least, we are also preparing to apply deep learning
approaches for this problem.
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